High-resolution solid-state 1H MAS NMR of supramolecular materials

Darren H. Brouwer and John A. Ripmeester
Steacie Institute for Molecular Sciences, NRC, Ottawa, Ontario
Darren.Brouwer@nrc-cnrc.gc.ca

Solid-state NMR of protons has been a long-standing challenge to NMR spectroscopists due to the relatively poor spectral resolution arising from the narrow 1H chemical shift range and the strong 1H–1H homonuclear dipolar interactions present in most materials. However, these challenges are being met by advances in magic-angle spinning (MAS) technology, the development of advanced pulse sequences, and the availability of high magnetic fields (see Figure 1). Since the linewidths in 1H MAS spectra are approximately inversely proportional with MAS frequency, the availability of probes capable of achieving fast MAS conditions (~35 kHz), and now even ultrafast MAS conditions (~70 kHz), offers increased resolution in 1H MAS NMR spectra. Furthermore, the ability to perform solid-state 1H NMR experiments at ultrahigh-fields offers a further gain in spectral resolution since the chemical shift interaction scales linearly with magnetic field strength, while the 1H–1H dipolar interaction remains constant.

Figure 1: Improving in the resolution of 1H MAS NMR spectra by increasing the magnetic field strength [1] (left), increasing the magic-angle spinning frequency (middle), or by employing a multiple pulse decoupling sequence (right).

We have been implementing and developing advanced NMR multiple pulse sequences that decouple the 1H–1H homonuclear dipolar interactions in order to obtain high resolution 1H solid-state NMR spectra [2], with a view towards applications involving structural studies of supramolecular materials. One area of interest is the hydrogen bonding interactions that hold supramolecular materials together. We have developed a new pulse sequence that provides detailed information about hydrogen bonding by measuring the 1H chemical shift anisotropy (CSA) while still retaining the high resolution necessary to resolve multiple proton sites [3] (Figure 2). We have also implemented multi-
dimensional NMR experiments [4] that probe the spatial proximities between protons in supramolecular host-guest materials, providing important information about these structures (Figure 3). Finally, we have been performing ab initio calculations of 1H chemical shifts in order to complement experimental NMR data. A particularly interesting system has been the complexation-induced 1H chemical shifts in calixarene host-guest complexes.

References